US009251915B2

a2 United States Patent

(10) Patent No.: US 9,251,915 B2

Lai et al. 45) Date of Patent: Feb. 2, 2016
(54) SEAMLESS FAIL ANALYSIS WITH MEMORY (56) References Cited
EFFICIENT STORAGE OF FAIL LISTS
U.S. PATENT DOCUMENTS
(71) Applicant: Advantest Corporation, Tokyo (JP) 5469450 A * 11/1995 Choetal. ..ovoorocooce.. 714/766
5,881,221 A * 3/1999 Hoangetal. ... 714/42
. : . 8,677,306 B1* 3/2014 Andreev etal. 716/136
(72) Inventors: Elgnh L;"’]S)uin}g]ale’tc‘%wsg{. cA 2002/0019961 Al* 2/2002 Blodgeft ... - 714/718
(U;)‘““ 0 Delaluente, {upertino, 2003/0074612 Al* 4/2003 Houetal. 714/723
2004/0019838 Al™* 12004 Marrccoeene. .. T14/718
2006/0156134 Al* 7/2006 Mukherjee et al. T14/733
H . 2007/0067685 Al* 3/2007 Yamadaetal. T14/718
(73) Assignee: ADVANTEST CORPORATION, 2007/0168781 ALl* 7/2007 Sutardjaetal. 714/718
Tokyo (JP) 2007/0288793 Al* 12/2007 Gatzemeier etal. 714/6
2008/0177934 Al* 7/2008 Yuetal. 711/103
(*) Notice: Subject to any disclaimer, the term of this 2009/0217093 AL* /2009 €O ooooocrvverisirrerens 714/30
tent i tended diusted under 35 2009/0217102 AL* 82009 CO .ccovvvvvvevciecieiee 714/42
patent 15 extended or adjusted under 2009/0254785 Al* 10/2009 Grunzke 714/719
U.S.C. 154(b) by 59 days. 2014/0082453 Al* 3/2014 Sikdaretal.c..co....... 714/763
% o .
(21) Appl. No.: 14/077,048 cited by examiner
Primary Examiner — Daniel McMahon
(22) Filed: Now. 11, 2013 (57) ABSTRACT
A method for testing memory devices under test (DUTs)
(65) Prior Publication Data using automated test equipment (ATE) is presented. The
method comprises retrieving a portion of raw test data from a
US 2015/0135026 Al May 14, 2015 memory device under test (DUT). It also comprises compar-
ing the portion of raw test data with expected test data to
(51) Int.ClL determine failure information, wherein the failure informa-
G1IC 29/00 (2006.01) tion comprises information regarding failing bits generated
G11C 29/08 (2006.01) by the memory DUT. Next, the method comprises utilizing
G1IC 29/56 (2006.01) paging to transfer data comprising the failure information to
Gl1C 29/04 (2006.01) a filtering module and filtering out the failure information
(52) US.CL from transferred data using the filtering module. Further, it
CPC ... G11C 29/08 (2013.01); G11C 29/56008 comprises updating a fail list using the failure information,
(2013.01); G11C 2029/0405 (2013.01); G11C wherein the fail list comprises address information for
2029/5606 (2013.01) respective failing bits within the memory DUT. Finally, it
(58) Field of Classification Search comprises repeating all the prior steps for the next block of

None
See application file for complete search history.

raw test data.

20 Claims, 7 Drawing Sheets

{ Start

Reiriaving a Block of Test Data from a memory DUT
02

Deter

Camparing Biack of icetrieved Test Dats with Expacied Data 15
intermation

Utilizhig paging 10 trans

lock of campated dafa o an FPGA
module

Filfering Out the Fait b

lock of transforred data

Masking Fails Cornaciatie 10
7

oftware from the faiure data !
14

:

nation regarding rsmaining |

U.S. Patent Feb. 2, 2016 Sheet 1 of 7 US 9,251,915 B2

110
\
%
114 116 118 120 3 122 ;
PROGESSOR SYSTEM MEMORY || e - COMMUNICATION |
MEMORY | | CONTROLLER = | CONTROLLER INTERFACE
% 'y) i &
¥ g ¥ ¥ -
- 4 4 A il
/Vd 3 ¥ | ¥
142 128 130 t 134
—= DISPLAY INPUT w1 STORAGE et
ADAPTER INTERFACE .| INTERFACE
4 & LT
4 ¥ ¥
124 198 132 133
DISPLAY TN g PRIMARY BACKUP
DEVICE INPUT DEVICE STORAGE STORAGE
SEVICE BEVIOE
148 ;
DATABASES :

FIG. 1

U.S. Patent Feb. 2, 2016 Sheet 2 of 7 US 9,251,915 B2

BUT | DUT | | DUT | DUT |

211 212 | | 293 | 214 |
T &
¥ ¥ ¥

Tester Hardware &
202 ‘

Psfoemandy
asd

290

Passormans |
;

Ferformsnse
ceapd

US 9,251,915 B2

Sheet 3 of 7

Feb. 2, 2016

ore

v old

AU

HORYHENES JUNTRYE DNY REUNAOS D00 RRNRE S SO T AROWNES ¥aHng
4

U.S. Patent

0LE

v

<2
~—
(19}

U.S. Patent Feb. 2, 2016 Sheet 4 of 7 US 9,251,915 B2

e B

E wpd <t
L.

F b e

I e BEES

& THEE L

LEE

P -]

T B

TO
DUT ==
302

U.S. Patent Feb. 2, 2016 Sheet 5 of 7 US 9,251,915 B2

FIG. 5

0
BUFFER MEMORY , ERROR FILTERING ECC COUNTERS AND FALL LIST GENERATION

U.S. Patent Feb. 2, 2016 Sheet 6 of 7 US 9,251,915 B2

340

FIG. 6

U.S. Patent Feb. 2, 2016 Sheet 7 of 7 US 9,251,915 B2

()

A

Ratriaving g Block of Test Data from a mamory BUT
702

¥
Comparing Block of Retrieved Test Data with Expected Data to
Determine Fail information
704

%
Utilizing paging to transfer block of compared data to an FPGA
module

798

!

Filtering Cut the Fall information From the block of transferred data
to generate fatlure dala
708

Masking Fails Correctable in Software from the failure data
718

!

Adding fo a Fail List with Addrass Information regarding remaining
the Fails

o AN

. -~ Get Next ™~
Biock?
S 744 P

Dons
716

.

~.

FIG. 7

US 9,251,915 B2

1
SEAMLESS FAIL ANALYSIS WITH MEMORY
EFFICIENT STORAGE OF FAIL LISTS

FIELD OF THE INVENTION

Embodiments of the present invention relate generally to
automated device testing and more specifically to a low-cost
method for automated testing of memory devices.

BACKGROUND OF THE INVENTION

Automated test equipment (ATE) can be any testing assem-
bly that performs a test on a device, semiconductor wafer or
die, etc. ATE assemblies may be used to execute automated
tests that quickly perform measurements and generate test
results that can then be analyzed. An ATE assembly may be
anything from a computer system coupled to a meter, to a
complicated automated test assembly that may include a cus-
tom, dedicated computer control system and many different
test instruments that are capable of automatically testing elec-
tronics parts and/or semiconductor. Automatic Test Equip-
ment (ATE) is commonly used within the field of electrical
chip manufacturing. ATE systems both reduce the amount of
time spent on testing devices to ensure that the device func-
tions as designed and serve as a diagnostic tool to determine
the presence of faulty components within a given device
before it reaches the consumer.

In testing devices or products, e.g. after production, it is
crucial to achieve among others a high product quality, an
estimation of the device or product performance, a feedback
concerning the manufacturing process and finally a high cus-
tomer contentment. Usually a plurality of tests is performed
in order to ensure the correct function of a device or product,
commonly referred to as a device under test (“DUT”) in
testing parlance. The plurality of tests is typically part of a test
plan that is loaded into the ATE system by the user. The test
plan acts as a blueprint for running the tests on the DUTs. The
plurality of tests may be compiled in a test flow wherein the
test flow may be separated into different test groups which
contain one or more tests for testing the device or product. For
example, a semiconductor device may be tested with a test
flow comprising contact tests, current-voltage tests, logic
tests, speed tests, stress tests and functional tests.

Testing memory type DUTs, e.g., NAND flash packages
requires some type of error capture and analysis. Conven-
tional ATE solutions for testing memory type DUTs typically
capture an entire bitmap of the memory array for the DUT
where the errors can be seen can be observed within a 2-di-
mensional representation of the memory array in the x-y
plane and analyzed. This can be particularly onerous from a
resource perspective as memory arrays in current and future
memory devices continue to grow. For example, current typi-
cal NAND devices can typically store anywhere from 32
Gigabits (Gb) to 128 Gb of information. Further, a typical
ATE system can test hundreds of DUTs in parallel. Accord-
ingly, being able to store entire bitmaps for all the DUTs can
become exceedingly expensive, both from a memory storage
and processing perspective, if not impossible due to tester
hardware physical limitations. Not only does storing all the
bitmaps require a considerable amount of memory, but also
high performance processors are required to rapidly scan all
the stored information and find all the fail related information
in as short a duration as possible. Further, the larger memory
sizes required in typical ATE solutions is an impediment to
increase tester parallelism because of the high cost required to
build the tester.

10

40

45

50

2

Further, another limitation with conventional ATE solution
for testing memory type DUTs is that all the failure analyses
onthe DUTs are conducted during post-processing steps after
the entire bitmap arrays have been captured for the respective
devices using external error capture memory. It is only after
capturing the full bit-maps of the failed memory arrays that
the ATE controller of a conventional tester can analyze them
to determine how to get rid of bad bits in the memory array
and the most efficient way to repair the device if possible.
Waiting for all the information to be collected from the DUTs
before beginning the redundancy and failure analyses intro-
duces unnecessary latency in the testing process and adds to
the cost.

BRIEF SUMMARY OF THE INVENTION

Accordingly, what is needed is an ATE system that pro-
vides a lower cost and more efficient solution for capturing
errors and performing failure analysis of memory type DUTs.

In one embodiment, the present invention eliminates the
larger memories in the ATE systems used to capture bitmaps
from multiple DUTs and replaces it with real time compres-
sion and analysis hardware. For example, instead of capturing
entire bitmap arrays of the DUTs in a single pass, the embodi-
ments of the present invention perform numerous passes in
sequence and filter out and compress the critical failure
related information from the DUTs in real time before log-
ging it, so that the passing memory bits related information
does not need to be saved in error capture memory. By not
requiring bitmap memory to implement the tester solution,
the embodiments of the present invention result in consider-
able cost savings.

Further, in one embodiment, embodiments of the present
invention also perform the redundancy, failure and repair
analyses in real time. Accordingly, embodiments of the
present invention advantageously circumvent the latency
resulting from capturing the failure related data before con-
ducting failure analyses during post-processing. Embodi-
ments of the present invention perform the analyses in real
time by processing multiple blocks of the incoming test data
from the DUTs over time and performing numerous passes in
sequence using a pipeline configuration. By processing
smaller blocks or pages of data in sequence over time,
embodiments of the present invention can perform the analy-
ses that a conventional ATE can using much less storage space
and fewer computational resources.

By filtering out and compressing failure related informa-
tion in real time, embodiments of the present invention also
advantageously remove the tester hardware requirement of
matching the memory DUT minimum size, which is progres-
sively getting larger with advances in technology such that at
some point it may not be possible to make the tester solution
economically efficient.

Finally, embodiments of the present invention can easily be
adapted to future memory DUTs with growing densities and
more advanced repair algorithms.

In one embodiment, a method for testing memory devices
under test (DUTs) using automated test equipment (ATE) is
presented. The method comprises retrieving a portion of raw
test data from a memory device under test (DUT). It also
comprises comparing the portion of raw test data with
expected test data to determine failure information, wherein
the failure information comprises information regarding fail-
ing bits generated by the memory DUT. Next, the method
comprises utilizing paging to transfer data comprising the
failure information to a filtering module and filtering out the
failure information from transferred data using the filtering

US 9,251,915 B2

3

module. Further, it comprises updating a fail list using the
failure information, wherein the fail list comprises address
information for respective failing bits within the memory
DUT. Finally, it comprises repeating all the prior steps for the
next block of raw test data.

In a different embodiment, a computer-readable storage
medium having stored thereon, computer executable instruc-
tions that, if executed by a computer system cause the com-
puter system to perform a method for testing memory devices
under test (DUTs) using automated test equipment (ATE) is
disclosed. The method comprises retrieving a portion of raw
test data from a memory device under test (DUT). It also
comprises comparing the portion of raw test data with
expected test data to determine failure information, wherein
the failure information comprises information regarding fail-
ing bits generated by the memory DUT. Next, the method
comprises utilizing paging to transfer data comprising the
failure information to a filtering module and filtering out the
failure information from transferred data using the filtering
module. Further, it comprises updating a fail list using the
failure information, wherein the fail list comprises address
information for respective failing bits within the memory
DUT. Finally, it comprises repeating all the prior steps for the
next block of raw test data.

In another embodiment, a system for testing memory
devices under test (DUTs) using automated test equipment
(ATE) is disclosed. The system comprises a test site module
operable to retrieve a portion of raw test data from a memory
device under test (DUT). The test site module, in turn, com-
prises: (a) comparator circuitry operable to compare the por-
tion of raw test data with expected test data to determine
failure information, wherein the failure information com-
prises information regarding failing bits generated by the
memory DUT; (b) a first processor operable to utilize paging
to transfer blocks of data sequentially comprising the failure
information to a filtering module; and (¢) an FPGA module.
The FPGA module comprises: (a) a fail filtering module
operable to filter out the failure information from transferred
data; and (b) a fail list generator module operable to update a
fail list using the failure information, wherein the fail list
comprises address information for respective failing bits
within the memory DUT.

The following detailed description together with the
accompanying drawings will provide a better understanding
of the nature and advantages of the present invention.

BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments of the present invention are illustrated by
way of example, and not by way of limitation, in the figures of
the accompanying drawings and in which like reference
numerals refer to similar elements.

FIG. 1is a computer system on which embodiments of the
automated test system of the present invention used for test-
ing memory devices under test (DUTs) can be implemented
in accordance with one embodiment of the present invention.

FIG. 2A is a schematic block diagram for an automated test
equipment (ATE) apparatus for testing memory DUTs on
which embodiments of the present invention can be imple-
mented in accordance with one embodiment of the present
invention.

FIG. 2B is a more detailed schematic block diagram of one
embodiment of the ATE apparatus of FIG. 2A.

FIG. 3 illustrates a block diagram of the ATE apparatus for
performing real time compression and analysis of failure
related information from testing memory DUTs in accor-
dance with one embodiment of the present invention.

10

15

20

25

30

35

40

45

50

55

60

65

4

FIG. 4 illustrates a block diagram for the test processor of
the ATE apparatus from FIG. 3 in accordance with one
embodiment of the present invention.

FIG. 5 illustrates a block diagram for the bridge field pro-
grammable gate array (FPGA) of the ATE apparatus from
FIG. 3 in accordance with one embodiment of the present
invention.

FIG. 6 illustrates a block diagram for the test site controller
module of the ATE apparatus from FIG. 3 in accordance with
one embodiment of the present invention.

FIG. 7 depicts a flowchart of an exemplary computer con-
trolled process for testing memory devices under test (DUTs)
is disclosed in accordance with one embodiment of the
present invention.

DETAILED DESCRIPTION OF THE INVENTION

Reference will now be made in detail to the various
embodiments of the present disclosure, examples of which
are illustrated in the accompanying drawings. While
described in conjunction with these embodiments, it will be
understood that they are not intended to limit the disclosure to
these embodiments. On the contrary, the disclosure is
intended to cover alternatives, modifications and equivalents,
which may be included within the spirit and scope of the
disclosure as defined by the appended claims. Furthermore, in
the following detailed description of the present disclosure,
numerous specific details are set forth in order to provide a
thorough understanding of the present disclosure. However, it
will be understood that the present disclosure may be prac-
ticed without these specific details. In other instances, well-
known methods, procedures, components, and circuits have
not been described in detail so as not to unnecessarily obscure
aspects of the present disclosure.

Some portions of the detailed descriptions that follow are
presented in terms of procedures, logic blocks, processing,
and other symbolic representations of operations on data bits
within a computer memory. These descriptions and represen-
tations are the means used by those skilled in the data pro-
cessing arts to most effectively convey the substance of their
work to others skilled in the art. In the present application, a
procedure, logic block, process, or the like, is conceived to be
a self-consistent sequence of steps or instructions leading to a
desired result. The steps are those utilizing physical manipu-
lations of physical quantities. Usually, although not necessar-
ily, these quantities take the form of electrical or magnetic
signals capable of being stored, transferred, combined, com-
pared, and otherwise manipulated in a computer system. It
has proven convenient at times, principally for reasons of
common usage, to refer to these signals as transactions, bits,
values, elements, symbols, characters, samples, pixels, or the
like.

It should be borne in mind, however, that all of these and
similar terms are to be associated with the appropriate physi-
cal quantities and are merely convenient labels applied to
these quantities. Unless specifically stated otherwise as
apparent from the following discussions, it is appreciated that
throughout the present disclosure, discussions utilizing terms
such as “generating,” “retrieving,” “comparing,” “filtering,”
and “masking” or the like, refer to actions and processes (e.g.,
flowchart 700 of FIG. 7) of a computer system or similar
electronic computing device or processor (e.g., system 110 of
FIG. 1). The computer system or similar electronic comput-
ing device manipulates and transforms data represented as
physical (electronic) quantities within the computer system
memories, registers or other such information storage, trans-
mission or display devices.

US 9,251,915 B2

5

Embodiments described herein may be discussed in the
general context of computer-executable instructions residing
on some form of computer-readable storage medium, such as
program modules, executed by one or more computers or
other devices. By way of example, and not limitation, com-
puter-readable storage media may comprise non-transitory
computer-readable storage media and communication media;
non-transitory computer-readable media include all com-
puter-readable media except for a transitory, propagating sig-
nal. Generally, program modules include routines, programs,
objects, components, data structures, etc., that perform par-
ticular tasks or implement particular abstract data types. The
functionality of the program modules may be combined or
distributed as desired in various embodiments.

Computer storage media includes volatile and nonvolatile,
removable and non-removable media implemented in any
method or technology for storage of information such as
computer-readable instructions, data structures, program
modules or other data. Computer storage media includes, but
is not limited to, random access memory (RAM), read only
memory (ROM), electrically erasable programmable ROM
(EEPROM), flash memory or other memory technology,
compact disk ROM (CD-ROM), digital versatile disks
(DVDs) or other optical storage, magnetic cassettes, mag-
netic tape, magnetic disk storage or other magnetic storage
devices, or any other medium that can be used to store the
desired information and that can accessed to retrieve that
information.

Communication media can embody computer-executable
instructions, data structures, and program modules, and
includes any information delivery media. By way of example,
and not limitation, communication media includes wired
media such as a wired network or direct-wired connection,
and wireless media such as acoustic, radio frequency (RF),
infrared, and other wireless media. Combinations of any of
the above can also be included within the scope of computer-
readable media.

FIG. 1is a computer system on which embodiments of the
automated test system (ATE) of the present invention used for
testing memory devices under test (DUTs) can be imple-
mented in accordance with one embodiment of the present
invention. For example, computing system 110, in one
embodiment, could implement the site controller of the tester
system, wherein the site controller connects to and controls
the ATE of the present invention used for testing memory
DUTs. Computing system 110 broadly represents any single
or multi-processor computing device or system capable of
executing computer-readable instructions. Examples of com-
puting system 110 include, without limitation, workstations,
laptops, client-side terminals, servers, distributed computing
systems, or any other computing system or device. In its most
basic configuration, computing system 110 may include at
least one processor 114 and a system memory 116.

Processor 114 generally represents any type or form of
processing unit capable of processing data or interpreting and
executing instructions. In certain embodiments, processor
114 may receive instructions from a software application or
module. These instructions may cause processor 114 to per-
form the functions of one or more of the example embodi-
ments described and/or illustrated herein.

System memory 116 generally represents any type or form
of volatile or non-volatile storage device or medium capable
of storing data and/or other computer-readable instructions.
Examples of system memory 116 include, without limitation,
RAM, ROM, flash memory, or any other suitable memory
device. Although not required, in certain embodiments com-
puting system 110 may include both a volatile memory unit

10

15

20

25

30

35

40

45

50

55

60

65

6

(such as, for example, system memory 116) and a non-vola-
tile storage device (such as, for example, primary storage
device 132).

Computing system 110 may also include one or more com-
ponents or elements in addition to processor 114 and system
memory 116. For example, in the embodiment of FIG. 1,
computing system 110 includes a memory controller 118, an
input/output (I/O) controller 120, and a communication inter-
face 122, each of which may be interconnected via a commu-
nication infrastructure 112. Communication infrastructure
112 generally represents any type or form of infrastructure
capable of facilitating communication between one or more
components of a computing device. Examples of communi-
cation infrastructure 112 include, without limitation, a com-
munication bus (such as an Industry Standard Architecture
(ISA), Peripheral Component Interconnect (PCI), PCI
Express (PCle), or similar bus) and a network.

Memory controller 118 generally represents any type or
form of device capable of handling memory or data or con-
trolling communication between one or more components of
computing system 110. For example, memory controller 118
may control communication between processor 114, system
memory 116, and I/O controller 120 via communication
infrastructure 112.

1/0O controller 120 generally represents any type or form of
module capable of coordinating and/or controlling the input
and output functions of a computing device. For example, [/O
controller 120 may control or facilitate transfer of data
between one or more elements of computing system 110,
such as processor 114, system memory 116, communication
interface 122, display adapter 126, input interface 130, and
storage interface 134.

Communication interface 122 broadly represents any type
or form of communication device or adapter capable of facili-
tating communication between example computing system
110 and one or more additional devices. For example, com-
munication interface 122 may {facilitate communication
between computing system 110 and a private or public net-
work including additional computing systems. Examples of
communication interface 122 include, without limitation, a
wired network interface (such as a network interface card), a
wireless network interface (such as a wireless network inter-
face card), a modem, and any other suitable interface. In one
embodiment, communication interface 122 provides a direct
connection to a remote server via a direct link to a network,
such as the Internet. Communication interface 122 may also
indirectly provide such a connection through any other suit-
able connection.

Communication interface 122 may also represent a host
adapter configured to facilitate communication between com-
puting system 110 and one or more additional network or
storage devices via an external bus or communications chan-
nel. Examples of host adapters include, without limitation,
Small Computer System Interface (SCSI) host adapters, Uni-
versal Serial Bus (USB) host adapters, IEEE (Institute of
Electrical and FElectronics Engineers) 1394 host adapters,
Serial Advanced Technology Attachment (SATA) and Exter-
nal SATA (eSATA) host adapters, Advanced Technology
Attachment (ATA) and Parallel ATA (PATA) host adapters,
Fibre Channel interface adapters, Ethernet adapters, or the
like. Communication interface 122 may also allow comput-
ing system 110 to engage in distributed or remote computing.
For example, communication interface 122 may receive
instructions from a remote device or send instructions to a
remote device for execution.

As illustrated in FIG. 1, computing system 110 may also
include at least one display device 124 coupled to communi-

US 9,251,915 B2

7

cation infrastructure 112 via a display adapter 126. Display
device 124 generally represents any type or form of device
capable of visually displaying information forwarded by dis-
play adapter 126. Similarly, display adapter 126 generally
represents any type or form of device configured to forward
graphics, text, and other data for display on display device
124.

As illustrated in FIG. 1, computing system 110 may also
include at least one input device 128 coupled to communica-
tion infrastructure 112 via an input interface 130. Input device
128 generally represents any type or form of input device
capable of providing input, either computer- or human-gen-
erated, to computing system 110. Examples of input device
128 include, without limitation, a keyboard, a pointing
device, a speech recognition device, or any other input device.

As illustrated in FIG. 1, computing system 110 may also
include a primary storage device 132 and a backup storage
device 133 coupled to communication infrastructure 112 via
a storage interface 134. Storage devices 132 and 133 gener-
ally represent any type or form of storage device or medium
capable of storing data and/or other computer-readable
instructions. For example, storage devices 132 and 133 may
be amagnetic disk drive (e.g., a so-called hard drive), a floppy
disk drive, a magnetic tape drive, an optical disk drive, a flash
drive, or the like. Storage interface 134 generally represents
any type or form of interface or device for transferring data
between storage devices 132 and 133 and other components
of computing system 110.

In one example, databases 140 may be stored in primary
storage device 132. Databases 140 may represent portions of
a single database or computing device or it may represent
multiple databases or computing devices. For example, data-
bases 140 may represent (be stored on) a portion of comput-
ing system 110 and/or portions of example network architec-
ture 200 in FIG. 2 (below). Alternatively, databases 140 may
represent (be stored on) one or more physically separate
devices capable of being accessed by a computing device,
such as computing system 110 and/or portions of network
architecture 200.

Continuing with reference to FIG. 1, storage devices 132
and 133 may be configured to read from and/or write to a
removable storage unit configured to store computer soft-
ware, data, or other computer-readable information.
Examples of suitable removable storage units include, with-
out limitation, a floppy disk, a magnetic tape, an optical disk,
a flash memory device, or the like. Storage devices 132 and
133 may also include other similar structures or devices for
allowing computer software, data, or other computer-read-
able instructions to be loaded into computing system 110. For
example, storage devices 132 and 133 may be configured to
read and write software, data, or other computer-readable
information. Storage devices 132 and 133 may also be a part
of computing system 110 or may be separate devices accessed
through other interface systems.

Many other devices or subsystems may be connected to
computing system 110. Conversely, all of the components
and devices illustrated in FIG. 1 need not be present to prac-
tice the embodiments described herein. The devices and sub-
systems referenced above may also be interconnected in dif-
ferent ways from that shown in FIG. 1. Computing system
110 may also employ any number of software, firmware,
and/or hardware configurations. For example, the example
embodiments disclosed herein may be encoded as a computer
program (also referred to as computer software, software
applications, computer-readable instructions, or computer
control logic) on a computer-readable medium.

10

15

20

25

30

35

40

45

50

55

60

65

8

The computer-readable medium containing the computer
program may be loaded into computing system 110. Allor a
portion of the computer program stored on the computer-
readable medium may then be stored in system memory 116
and/or various portions of storage devices 132 and 133. When
executed by processor 114, a computer program loaded into
computing system 110 may cause processor 114 to perform
and/or be a means for performing the functions of the
example embodiments described and/or illustrated herein.
Additionally or alternatively, the example embodiments
described and/or illustrated herein may be implemented in
firmware and/or hardware.

For example, a computer program for running test plans
may be stored on the computer-readable medium and then
stored in system memory 116 and/or various portions of
storage devices 132 and 133. When executed by the processor
114, the computer program may cause the processor 114 to
perform and/or be a means for performing the functions
required for sharing resources between multiple test cores in
a concurrent test environment.

Seamless Fail Analysis with Memory Efficient Storage of Fail
Lists

In one embodiment, the present invention provides a lower
cost and more efficient solution for capturing errors and per-
forming failure analysis of memory type DUTs.

In one embodiment, the present invention eliminates the
larger memories in the ATE systems used to capture bitmaps
from multiple DUTs and replaces it with real time compres-
sion and analysis hardware. For example, instead of capturing
entire bitmap arrays of the DUTs in a single pass, embodi-
ments of the present invention perform numerous passes in
sequence and filter out and compress the critical failure
related information from the DUTs in real time before log-
ging it, so that the redundant pass related information does not
need to be saved in error capture memory. By not requiring
bitmap memory to implement the tester solution, the embodi-
ments of the present invention result in considerable cost
savings.

Further, in one embodiment, the present invention also
performs the redundancy, failure and repair analyses in real
time. Accordingly, embodiments of the present invention
advantageously circumvents the latency resulting from cap-
turing complete failure related data before conducting failure
analyses during post-processing. By filtering out and com-
pressing failure related information in real time, embodi-
ments of the present invention also advantageously removes
the tester hardware requirement of matching the memory
DUT minimum size, which is progressively getting larger
with advances in technology such that at some point it may
not be possible to make the tester solution economically
efficient.

Embodiments of the present invention perform the analy-
ses in real time by processing multiple blocks of the incoming
test data from the DUTs over time and performing numerous
passes in sequence using a pipeline configuration. By pro-
cessing smaller blocks or pages of data in sequence over time,
embodiments of the present invention can perform the analy-
ses that a conventional ATE can using much less storage space
and fewer computational resources.

Finally, the present invention, in one embodiment, can
easily be adapted to future memory DUTs with growing
densities and more advanced repair algorithms.

FIG. 2A is a schematic block diagram for an automated test
equipment (ATE) apparatus for testing memory DUTs on
which embodiments of the present invention can be imple-
mented in accordance with one embodiment of the present
invention. In one embodiment, the system controller 201

US 9,251,915 B2

9

comprises one or more linked computers. In other embodi-
ments, the system controller often comprises only a single
computer. The system controller 201 is the overall system
control unit, and runs the software for the ATE that is respon-
sible for accomplishing all the user-level testing tasks, includ-
ing running the user’s main test plan.

The communicator bus 215 provides a high-speed elec-
tronic communication channel between the system controller
and the tester hardware. The communicator bus can also be
referred to as a backplane, a module connection enabler, or
system bus. Physically, communicator bus 215 is a fast, high-
bandwidth duplex connection bus that can be electrical, opti-
cal, etc. In one embodiment, communicator bus 215 can use
the TCP/IP protocol. System controller 201 sets up the con-
ditions for testing the DUTs 211-214 by programming the
tester hardware through commands sent over the communi-
cator bus 215.

Tester hardware 202 comprises the complex set of elec-
tronic and electrical parts and connectors necessary to pro-
vide the test stimulus to the devices under test (DUTs) 211-
214 and measure the response of the DUTs to the stimulus,
and compare it against the expected response. In one embodi-
ment, tester hardware 202 can comprise multiple site control-
lers, wherein each site controller is connected to multiple
DUTs. Each site controller is a computer used in a device test
and, in one embodiment, can perform substantially the same
function as computing system 110. A test plan program can be
executed on a site controller. The site controllers are con-
nected to the system controller and test operations performed
by auser are processed on the system controller, which con-
trols the site controllers over communicator bus 215.

FIG. 2B is a more detailed schematic block diagram of one
embodiment of the automated test equipment apparatus of
FIG. 2A. In the embodiment illustrated in FIG. 2B, tester
hardware 202 can comprise multiple site controllers 270,
wherein each site controller is connected to multiple DUTs
290. Each site controller 270 can control a test site 295, which
comprises one or more test modules 280. As indicated above,
each site controller is a computer used in a device test and, in
one embodiment, can perform substantially the same func-
tion as computing system 110. A test plan program can be
executed on a site controller, which controls test modules 280
in the course of performing device tests for DUTs 290. The
site controllers 270 are connected to the system controller,
which controls the site controllers over communicator bus
215. In some embodiments, test developers cannot directly
operate the site controllers but instead operations performed
by the developer are processed on the system controller 201,
which controls the site controllers via communicator bus 215.

Site controllers 270 and test modules 280, in one embodi-
ment, can be connected via high-speed optical buses. The bus
switch 285 has a matrix structure for connecting the site
controllers with the test modules. Using the bus switch 285
allows a site controller to connect with any test modules 280,
and allows flexibility in configuring bus connections.

Test modules 280 required for device test are typically
mounted in the test system test head. Test module configura-
tion can be adapted to the targeted device. A set of test mod-
ules 280 required for device test is called a test site. Each test
site 295 is controlled by a site controller. There can be various
types of test modules for many applications. Some exemplary
types of modules are sync-generator module, sync-matrix
module, device power supply module, analog module, RF
module and digital module.

FIG. 3 illustrates a block diagram of the ATE apparatus for
performing real time compression and analysis of failure
related information from testing memory DUTs in accor-

10

15

20

25

30

35

40

45

50

55

60

65

10

dance with one embodiment of the present invention. In one
embodiment, the apparatus of the present invention com-
prises a test site 310, wherein test site 310 can be configured
to operate substantially similarly to one of the test sites 295
within tester hardware 202 shown in FIG. 2B. In one embodi-
ment of the present invention, test site 310 comprises a test
processor module 306, a bridge FPGA module 370 and a test
site controller module 334. Test site 310 can connect to and
test one or more DUTs 302 in parallel. In one embodiment,
test site 310 can test as many as 8 DUTs in parallel. Test data
is received from DUT 302 via pin electronics and compara-
tors 304, it is processed and compressed by test processor 306
and FPGA module 370, and finally the fail information
extracted from the test data is conveyed to test site controller
module 334.

Test processor module 306 can, in one embodiment, be an
application specific integrated circuit (ASIC). In a different
embodiment, test processor module 306 can also be an oft-
the-shelf processor, e.g., an ARM processor programmed to
perform the same function. Test processor module 306, in one
embodiment, provides the interface between the pin electron-
ics driver and comparators 304 of the test site and the FPGA
module 370. Test vectors are run on DUT 302 and compara-
tors 304 are used to discriminate between the high and low
threshold values, indicating a 1 or a O respectively, read in
from the DUT 302. In one embodiment, the vectors are read
in from DUT 302 at high speeds, e.g., as high as 1.2 Gigabits
per second (Gps). As will be explained below in connection
with FIG. 4, test processor module 306 comprises fast
memory caches (UBM-A 308 and UBM-B 312) used to cap-
ture test data at the maximum speed of the tester.

The test process module 306 conveys the information cap-
tured from DUT 302 to the bridge FPGA module 370. Bridge
FPGA module 370, as will be discussed further in connection
with FIG. 5, in one embodiment, is operable to process and
analyze the data from test processor module 306 in real time.
For example, the FPGA module 370 can, among other things,
mask fail data that can be corrected in software, and also it can
compress and synthesize error related information that cannot
be corrected in software into convenient fail lists for each
connected DUT so that only the precise location of the fail-
ures can be reported out instead of all the redundant pass
related information that is reported by conventional tester
devices.

Finally, the test site controller module 334, as will be
discussed further in connection with FIG. 6, in one embodi-
ment, gathers the fail lists communicated by the FPGA mod-
ule 370 and analyzes the information to provide a corrective
solution. In one embodiment, the test site controller module
334 can be part of the site controller 270 as shown in FIG. 2B,
while in another embodiment, the test site controller module
334 can be configured within test site 295 itself. In one
embodiment, test site controller module 334 can be an off-
the-shelf processor, e.g., an ARM processor programmed to
perform the necessary functions within test site 310. Further,
in one embodiment, test site controller module 334 can be a
daughter board into which circuit boards comprising test
processor 306 and FPGA module 370 plug in.

FIG. 4 illustrates a block diagram for the test processor of
the ATE apparatus from FIG. 3 in accordance with one
embodiment of the present invention. As discussed above, test
processor 306 comprises two banks of memory, Universal
Buffer Memory (UBM) A 308 and UBM B 312 to capture test
data from the DUT 302 at the maximum speed of the tester.
The memory for these two memory banks is size limited so
paging is used to oft-load the data to FPGA module 370.
Paging refers to a scheme of storing and retrieving data from

US 9,251,915 B2

11

a device in same-sized blocks called pages. In other words,
memories UBM-A 308 and UBM-B 312 are temporary stor-
age caches that are limited in size, e.g., their storage capacity
may be limited to only a single page or block of test data from
DUT 302, wherein the entire DUT may comprise thousands
of pages of test data. UBM-A 308 and UBM-B 312 will
alternate (or “ping-pong”) between each other to store the
high-speed information incoming from DUT 302. Accord-
ingly, test processor 306 will grab only a block or page of
information at a time from DUT 302 and store that informa-
tion in one of the two memory banks. It will then grab another
page of information and store it in the other memory bank
while the first memory bank transmits its information to the
FPGA module 370. In this way, the system captures memory
in chunks and processes the chunks in sequence.

As stated above, embodiments of the present invention
perform the retrieving and analyses of test data in real time by
processing multiple blocks of the incoming test data from the
DUTs over time and performing numerous passes in
sequence using a pipeline configuration.

While UBM-A 308 is receiving and storing a block of
incoming data from DUT 302, UBM-B 312 offloads its data
to the FPGA module 370 for processing and filtering in a
pipelined fashion. Similarly, while UBM-B 308 is receiving
and storing a block of incoming data from DUT 302, UBM-A
312 offloads its data to the FPGA module 370 for processing
and filtering. In this way, the two memory banks ping-pong
between each other to retrieve data from the DUT 302 and
transmit it to the FPGA module 370. In one embodiment, the
memory banks within the test processor transfer data to the
FPGA module 370 at a slower rate than the data is transferred
from the DUT 302 to the test processor. For example, data
from the test processor 306 to the FPGA can be transferred
over at 300 Mbps, which is slower in comparison to the 1.2
Gbps rate at which data is transferred from the DUT 302 to the
test processor.

Buffer memory (BM) block 314 can be used, in one
embodiment, to store data expected to be read out from the
DUT 302. If, for example, the test site apparatus 310 writes
random memory data into the memory DUT 302, the
expected data that is compared against the data read out from
DUT 302 can be stored in BM block 314. Of course, if a fixed
pattern e.g., all Os or all 1s is written into DUT 302, then BM
block 314 may not be required.

FIG. 5 illustrates a block diagram for the bridge field pro-
grammable gate array (FPGA) of the ATE apparatus from
FIG. 3 in accordance with one embodiment of the present
invention. As discussed above, in one embodiment, FPGA
module 370 is operable to process and analyze the data from
test processor module 306 in real time. The FPGA module
370, in one embodiment, can comprise an ECAM module
354. ECAM module 354 can be a configuration memory and,
in the embodiment shown in FIG. 5, is operable to perform
substantially the same function as a multiplexer. Depending
on the device topology, ECAM module 354 can rearrange the
incoming bits from test processor module 306. For example,
the data width supported by the UBM memory banks in test
processor module 306, may be wider than the width of the
data incoming from the DUT 302. For example if DUT 302
comprises 4 DUTs each with a data width of 8 bits, for a total
0f32 channels of data, and the UBM data width is 48 bits, then
ECAM module 354 can be used to select and filter out the
requisite 32 channels of data from the 48 available lanes of
data. In other words, the ECAM module 354, in one embodi-
ment, disambiguates the DUTs the data come from and filters
out the unused channels.

10

15

20

25

30

35

40

45

50

55

60

65

12

The ECAM module 354 routes the selected data to Fail
Filter module 350. Fail Filter module 350 processes the
incoming data and also latches information regarding all the
incoming failing bits. Fail Filter module 350 can also com-
prise circuitry to identify the DUT and address information
for the captured failing bits. In one embodiment, if the num-
ber of failing bits exceeds a predetermined ceiling such that
the device is rendered useless, the Fail Filter module 350 can
be configured to signal the test site controller module 334 that
the device should be discarded.

Inone embodiment of the present invention, FPGA module
370 can be configured with real time error correction check
(ECC) capability. In accordance with this capability, FPGA
350 illustrated in FIG. 5 comprises an ECC Fail Mask & Bad
Block Detect (EFMBBD) module and a Page ECC Counters
Buffer (PECB) module. The PECB module can comprise
counters that count the number of incoming error bits. If the
number of incoming error bits is below a certain threshold
value (the ECC threshold) for a particular DUT, for example,
the errors will likely be correctable in software. Accordingly,
these errors do not need to be flagged for inclusion in the fail
list generated by Fail List Generation module 328 or for
subsequent reparation processes in the test site controller
module 334 because these errors will be corrected in soft-
ware. The EFMBBD module can, therefore, be used to mask
or filter out such failing bits and they are not included in the
fail list generated by the FPGA module 370.

In one embodiment, the FPGA module 370 does not com-
prise the PECB and EFMBBD modules and all the failing bits
are reported out as part of the fail lists reported out to test site
controller module 334. Accordingly, the FPGA module 370 is
configured to report out all the failing bits as part of the fail list
generated by the Fail List Generation module 328 without
masking out any software-correctable failing bits.

In a typical memory DUT, certain pages or blocks of data
can be corrupted to an extent that it may not be possible to
repair them. However, the DUT is not discarded simply
because of a few corrupted pages or blocks. In one embodi-
ment of the present invention, the EFMBBD module is able to
detect and filter these bad blocks out so that no further
resources are expended in analyzing or repairing them. By
filtering out these bad blocks at an early stage in the FPGA
module pipeline, considerable resources are conserved that
would otherwise be spent on analyzing blocks that are too far
corrupted to be salvaged.

If the number of failures counted by PECB module 322 are
above the ECC threshold, then the number of failing bits
exceeding the ECC threshold are tagged and transmitted to
the subsequent blocks in the pipeline for real time failure
analysis, while the remaining failing bits that are correctable
in software are masked out by the EFMBBD module 324. In
other words, not masking out the failing bits exceeding the
ECC threshold effectively tags them for subsequent analysis
and repair by the later blocks in the pipeline.

The failure information that is not masked out is then
transmitted over to the ECR memory module 326. The ECR
module 326, in one embodiment, is a temporary buffer in
which incoming fail data is stored. Saving all the incoming
failure related information in the ECR module 326 allows the
pipeline to catch up and synchronize before the fail list is
generated by Fail List Generation 328 module. The ECR
module 326 comprises all the clean failure related informa-
tion that can be generated into a fail list by Fail List Genera-
tion module 328. This information is used by the Fail List
Generation module 328 to generate a fail list that, among
other things, has information regarding the identification of
the DUT that failed and the address of the failing bits. The fail

US 9,251,915 B2

13

list generated by the Fail List Generation module 328, in one
embodiment, is augmented on a per page basis. In other
words, module 328 augments fail lists in real time with infor-
mation for every new page or block it receives sequentially
from the pipeline. In other words, information for every new
page or block is simply added to the prior generated fail list.

By filtering out all the failure related information in real-
time by processing and analyzing each chunk of data sequen-
tially, embodiments of the present invention avoid needing to
parse through all the test data information at the same time
that a conventional ATE would need to parse through in order
to identity the failures. This results in significant cost saving
because a typical memory DUT will only have a few failing
bits and parsing through all the test information to identify the
few failing bits results in considerable wastage of computa-
tional and storage resources. Further, the present invention
allows the post-processor 336 to focus on repairing the failing
bits. In effect, the present invention enables a form of data
compression that helps manage the internal memory (ECR)
size and removes the need for large physical memories out-
side the FPGA.

The information generated by the Fail List Generation
module 328 is separated out on a per DUT basis by the Per
DUT Fail List FIFO (PDFLF) module 330. A First In First
Out (FIFO) queue is maintained for the failure information
received for each DUT within PDFLF module 330. The
PDFLF module enables the decoupling of the FPGA module
370 from the CPU 336 within test site controller module 334.
The information from the PDFLF module is communicated
over to CPU 336 through a PCle Interface module 332. In
different embodiment, other protocols besides PCle may be
used to communicate with CPU 336, e.g., SATA. When the
PDFLF module has data available to transfer over to the test
site controller module 334, it will flag CPU 336 with an
interrupt.

FIG. 6 illustrates a block diagram for the test site controller
module of the ATE apparatus from FIG. 3 in accordance with
one embodiment of the present invention. Depending on the
interrupt service time, the CPU 336 will respond to the inter-
rupt request from the PDFLF module 330 and receive the fail
list data and add it to CPU memory 338. In between interrupts
from the PDFLF module 330, the CPU 336 is performing real
time redundancy analysis and generating repair solutions for
previously received failure information.

If for any reason the PDFLF module 330 overflows, it will
flag the error to the CPU 336. Further, if the PDFLF module
330 is starting to get full and the CPU 336 has not been able
to service an interrupt to retrieve data from module 330, then
FMBUSY signal 318 can be used by FPGA module 370 to
signal test processor 308 not to send the next page of data.
Accordingly FMBUSY signal 318 can be used to perform a
handshake between module 306 and module 370 to allow the
two blocks to synchronize.

Once the final fail lists are sent and stored in the CPU
memory 338, the CPU 336 can perform redundancy analysis
and generate repair solutions for the failing bits. In one
embodiment, the final fail lists can be stored within CPU
memory block 338. The data flow from the test processor 306
to the FPGA module 370 and finally to the test site controller
module 334 is intended to be seamless. The pattern can con-
tinue to run the analysis hardware is operating on the resultant
data basis in the background using information from the fail
lists. It is important to note that the size of the fail list data-
bases e.g., CPU memory block 338 and the processing power
of'the CPU 336 can be upgraded as the sizes of memory DUTs
increases to accommodate higher capacities and reduce the
analysis times.

10

15

20

25

30

35

40

45

50

55

60

65

14

The CPU 336, after performing all its analyses, will gen-
erate a recommended repair plan informing the user of the
locations that need to be repaired in the memory DUT before
shipment. As mentioned above, certain errors will be correct-
able in software as flagged by the ECC blocks 324 and 322,
while the other errors will need to be repaired. The recom-
mended repair plan generated by CPU 336 will provide
details regarding the repairs that need to be performed on
memory DUT 302.

In one embodiment, the EBM memory module 340 can
also be used to store data patterns that the user wants to test on
the memory DUT 302. As discussed above, the user, for
example, may want to write a random pattern into and read
out the same pattern from the DUT 302. In such cases, the
EBM module can be used to store these patterns. The patterns
are communicated by the CPU 336, through PCle interface
module 332, to internal buffer memory 320 in the FPGA
module 370. The internal buffer memory 320 transmits the
patterns over to Bufter Memory 314 through Buffer Memory
Interface module 316. Data is transacted between EBM 340
and Buffer Memory 314 on a per page basis. The expected
data is loaded into Buffer Memory 314 on a per page basis
where it is used to compare against data received in either of
the memory banks, UBM A 308 or UBM B 312, before it is
swapped out with the next page of data. In one embodiment,
Buffer Memory 314 can comprise two different memory
banks, similar to UBM A 308 and UBM B 312, and operates
similarly to UBM A and UBM B, wherein the expected data
is swapped into one memory bank through BM Interface 316
while the data from the other one is being compared.

As discussed above, one advantage of embodiments of the
present invention is that the analysis and reparation is con-
ducted in the FPGA module 370 and test site controller mod-
ule 334 in real time by allowing each chunk of data to be
sequentially processed for faults in a pipeline configuration.
Unlike conventional machines where all the test data is first
collected in a sizeable buffer before itis analyzed by software,
the FPGA module 370 of the present invention analyzes the
test data one block at a time and compresses the failure
information while the test site controller module 334 per-
forms reparation of the failures in real time. Accordingly, test
times are significantly reduced as compared to conventional
ATEs.

FIG. 7 depicts a flowchart of an exemplary computer con-
trolled process for testing memory devices under test (DUTs)
is disclosed in accordance with one embodiment of the
present invention. The invention, however, is not limited to
the description provided by flowchart 700. Rather, it will be
apparent to persons skilled in the relevant art(s) from the
teachings provided herein that other functional flows are
within the scope and spirit of the present invention. Flowchart
700 will be described with continued reference to exemplary
embodiments described above though the method is not lim-
ited to those embodiments.

Atstep 702, ablock of test data is received into test site 310
from memory DUT 302. At step 704, the block is compared
using comparators 304 to expected data stored in BM 314 in
order to determine points of failure within DUT 302.

At step 706, paging is utilized to transfer the page of
compared data to an FPGA module 370. As discussed above,
UBM-A 308 and UBM-B 312 memory sizes are limited so
paging is used to off-load the data to the FPGA 370, wherein
the two memories UBM-A and UBM-B alternate between
each other to retrieve blocks of data from comparators 304
and transmit data to FPGA 370. By retrieving and transferring
the test data to the FPGA 370 in blocks or pages, embodi-
ments of the present invention enable smaller chunks of data

US 9,251,915 B2

15

to be processed sequentially in a pipeline configuration and,
therefore, require smaller storage memories and lesser com-
putational resources.

At step 708, the page of compared data is filtered out to
extract failure data using Fail Filter module 350. At step 710,
the combination of PECB module 322 and EFMBBD module
324 is used to mask out fails that are correctable in software.

At step 712, finally, a fail list is updated or added to by Fail
List Generation module 328 comprising information about
the remaining failures and their addresses, identifying the
DUT and locations of the failures. The fail list this informa-
tion is added to will also comprise information about failure
information from prior blocks that have also been processed.

Atstep 714, a determination is made if there are any further
blocks in DUT 302 that need to be processed. If not, the
process finishes at step 716. If there are further blocks, then
the process is repeated starting at step 702. As discussed
above, however, this process is sequential and keeps operat-
ing in a pipeline configuration until all the blocks in DUT 302
have been analyzed.

While the foregoing disclosure sets forth various embodi-
ments using specific block diagrams, flowcharts, and
examples, each block diagram component, flowchart step,
operation, and/or component described and/or illustrated
herein may be implemented, individually and/or collectively,
using a wide range of hardware, software, or firmware (or any
combination thereof) configurations. In addition, any disclo-
sure of components contained within other components
should be considered as examples because many other archi-
tectures can be implemented to achieve the same functional-
ity.

The process parameters and sequence of steps described
and/or illustrated herein are given by way of example only.
For example, while the steps illustrated and/or described
herein may be shown or discussed in a particular order, these
steps do not necessarily need to be performed in the order
illustrated or discussed. The various example methods
described and/or illustrated herein may also omit one or more
of the steps described or illustrated herein or include addi-
tional steps in addition to those disclosed.

While various embodiments have been described and/or
illustrated herein in the context of fully functional computing
systems, one or more of these example embodiments may be
distributed as a program product in a variety of forms, regard-
less of the particular type of computer-readable media used to
actually carry out the distribution. The embodiments dis-
closed herein may also be implemented using software mod-
ules that perform certain tasks. These software modules may
include script, batch, or other executable files that may be
stored on a computer-readable storage medium or in a com-
puting system. These software modules may configure acom-
puting system to perform one or more of the example embodi-
ments disclosed herein. One or more of the software modules
disclosed herein may be implemented in a cloud computing
environment. Cloud computing environments may provide
various services and applications via the Internet. These
cloud-based services (e.g., software as a service, platform as
a service, infrastructure as a service, etc.) may be accessible
through a Web browser or other remote interface. Various
functions described herein may be provided through a remote
desktop environment or any other cloud-based computing
environment.

The foregoing description, for purpose of explanation, has
been described with reference to specific embodiments. How-
ever, the illustrative discussions above are not intended to be
exhaustive or to limit the invention to the precise forms dis-
closed. Many modifications and variations are possible in

10

15

20

25

30

35

40

45

50

55

60

16

view of the above teachings. The embodiments were chosen
and described in order to best explain the principles of the
invention and its practical applications, to thereby enable
others skilled in the art to best utilize the invention and vari-
ous embodiments with various modifications as may be
suited to the particular use contemplated.

Embodiments according to the invention are thus
described. While the present disclosure has been described in
particular embodiments, it should be appreciated that the
invention should not be construed as limited by such embodi-
ments, but rather construed according to the below claims.

What is claimed is:

1. A method for testing memory devices under test (DUTs)
using automated test equipment (ATE), said method compris-
ing:

a) retrieving a portion of raw test data from a memory
device under test (DUT), wherein said ATE is operable
to be connected to a plurality of memory DUTs;

b) comparing said portion of raw test data with expected
test data to determine failure information, wherein said
failure information comprises information regarding
failing bits generated by said memory DUT;

¢) utilizing paging to transfer data comprising said failure
information to a filtering module;

d) filtering out said failure information from transferred
data using said filtering module;

e) updating a fail list using said failure information,
wherein said fail list comprises address information for
said failing bits within said memory DUT; and

f) repeating said (a)-(e) for another portion of raw test data.

2. The method of claim 1, further comprising masking out
aplurality of failing bits from said failure information prior to
said updating, wherein said plurality of failing bits is correct-
able using software during post-processing, and further
wherein information regarding said plurality of failing bits
are not included in said fail list.

3. The method of claim 2, further comprising filtering out
information pertaining to a plurality of corrupted blocks from
said failure information prior to said updating, wherein infor-
mation regarding said plurality of corrupted blocks is not
included in said fail list.

4. The method of claim 1, further comprising:

generating a repair plan using information from said fail
list, wherein said repair plan comprises details regarding
repairs that need to be performed on said memory DUT.

5. The method of claim 1, wherein said comparing is per-
formed by comparator circuitry, wherein said comparator
circuitry is operable to compare said portion of raw test data
from said memory DUT with said expected data stored in a
buffer memory to generate said data comprising said failure
information.

6. The method of claim 1, wherein said utilizing paging
comprises:

transferring a page of said data comprising said failure
information from one of two memory banks to said
filtering module, wherein said two memory banks alter-
nate between each other to retrieve the data from said
memory DUT and transfer the data to said filtering mod-
ule.

7. The method of claim 1, further comprising:

organizing said fail list into a plurality of fail lists, wherein
a separate fail list is created for each memory DUT of
said plurality of memory DUTs connected to said ATE,
and wherein said plurality of fail lists is maintained in a
First In First Out (FIFO) order.

8. A non-transitory computer-readable storage medium

having stored thereon, computer executable instructions that,

US 9,251,915 B2

17

if executed by a computer system cause the computer system
to perform a method for testing memory devices under test
(DUTs) using automated test equipment (ATE), said method
comprising:

a) retrieving a portion of raw test data from a memory
device under test (DUT), wherein said ATE is operable
to be connected to a plurality of memory DUTs;

b) comparing said portion of raw test data with expected
test data to determine failure information, wherein said
failure information comprises information regarding
failing bits generated by said memory DUT;

c) utilizing paging to transfer data comprising said failure
information to a filtering module;

d) filtering out said failure information from transferred
data using said filtering module;

e) updating a fail list using said failure information,
wherein said fail list comprises address information for
said failing bits within said memory DUT; and

f) repeating said (a)-(e) for another portion of raw test data.

9. The computer-readable medium as described in claim 8,

wherein said method further comprises:

masking out a plurality of failing bits from said failure
information prior to said updating, wherein said plural-
ity of failing bits is correctable using software during
post-processing, and further wherein information
regarding said plurality of failing bits are not included in
said fail list.

10. The computer-readable medium as described in claim

9, wherein said method further comprises:

filtering out information pertaining to a plurality of cor-
rupted blocks from said failure information prior to said
updating, wherein information regarding said plurality
of corrupted blocks is not included in said fail list.

11. The computer-readable medium as described in claim

8, wherein said method further comprises:

generating a repair plan using information from said fail
list, wherein said repair plan comprises details regarding
repairs that need to be performed on said memory DUT.

12. The computer-readable medium as described in claim

8, wherein said comparing is performed by comparator cir-
cuitry, wherein said comparator circuitry is operable to com-
pare said portion of raw test data from said memory DUT with
said expected data stored in a buffer memory to generate said
data comprising said failure information.

13. The computer-readable medium as described in claim

8, wherein said utilizing paging comprises:

transferring a page of said data comprising said failure
information from one of two memory banks to said
filtering module, wherein said two memory banks alter-
nate between each other to retrieve the data from said
memory DUT and transfer the data to said filtering mod-
ule.

14. The computer-readable medium as described in claim

8, wherein said method further comprises:

organizing said fail list into a plurality of fail lists, wherein
a separate fail list is created for each memory DUT of
said plurality of DUTs connected to said ATE, and
wherein said plurality of fail lists is maintained in a First
In First Out (FIFO) order.

5

15

25

35

40

45

18

15. A system for testing memory devices under test (DUTs)
using automated test equipment (ATE), said system compris-
ing:

a test site module operable to retrieve a portion of raw test
data from a memory device under test (DUT), wherein
said test site module comprises:
comparator circuitry operable to compare said portion of

raw test data with expected test data to determine
failure information, wherein said failure information
comprises information regarding failing bits gener-
ated by said memory DUT;

a first processor operable to utilize paging to transfer
blocks of data sequentially comprising said failure
information to a filtering module; and

an FPGA module comprising:

a fail filtering module operable to filter out said failure
information from transferred data; and

a fail list generator module operable to update a fail
list using said failure information, wherein said fail
list comprises address information for said failing
bits within said memory DUT.

16. The system of claim 15, wherein said test site module
further comprises:

an error correction check module operable to mask out a
plurality of failing bits from said failure information
prior to an update of said fail list, wherein said plurality
of failing bits is correctable using software during post-
processing, and further wherein information regarding
said plurality of failing bits are not included in said fail
list.

17. The system of claim 16, wherein said error correction
check module is further operable to filter out information
pertaining to a plurality of corrupted blocks from said failure
information prior to said update of said fail list, wherein
information regarding said plurality of corrupted blocks is not
included in said fail list.

18. The system of claim 15, wherein said test site module
further comprises:

a second processor operable to receive said fail list and
further operable to generate a repair plan using informa-
tion from said fail list, wherein said repair plan com-
prises details regarding repairs that need to be performed
on said memory DUT.

19. The system of claim 15, wherein said comparator cir-
cuitry compares said portion of raw test data from said
memory DUT with said expected data stored in a buffer
memory to generate said data comprising said failure infor-
mation.

20. The system of claim 15, wherein said first processor
comprises two memory banks, and wherein said first proces-
sor is operable to transfer a page of said data comprising said
failure information from one of said two memory banks to
said FPGA module to perform said paging, wherein said two
memory banks alternate between each other to retrieve said
portion of raw test data from said memory DUT and transfer
said page of said data to said filtering module.

#* #* #* #* #*

